Suppression of chromosome healing and anticheckpoint pathways in yeast postsenescence survivors.
نویسندگان
چکیده
Telomere repeat-like sequences at DNA double-strand breaks (DSBs) inhibit DNA damage signaling and serve as seeds to convert DSBs to new telomeres in mutagenic chromosome healing pathways. We find here that the response to seed-containing DSBs differs fundamentally between budding yeast (Saccharomyces cerevisiae) cells that maintain their telomeres via telomerase and so-called postsenescence survivors that use recombination-based alternative lengthening of telomere (ALT) mechanisms. Whereas telomere seeds are efficiently elongated by telomerase, they remain remarkably stable without de novo telomerization or extensive end resection in telomerase-deficient (est2Δ, tlc1Δ) postsenescence survivors. This telomere seed hyper-stability in ALT cells is associated with, but not caused by, prolonged DNA damage checkpoint activity (RAD9, RAD53) compared to telomerase-positive cells or presenescent telomerase-negative cells. The results indicate that both chromosome healing and anticheckpoint activity of telomere seeds are suppressed in yeast models of ALT pathways.
منابع مشابه
Comparative Efficacy Study of N-Chromosome Royal Jelly Versus Semelil (ANGIPARS) on Wound Healing of Diabetic Rats
Objective: The healing effects of two different dilutions (5 & 100%) of N-Chromosome Royal Jelly and ANGIPARS ointment were investigated and measured on experimental injuries in streptozotocin (STZ)-induced diabetic rats. This study investigated the healing effects of 2 different N Chromosome Royal Jelly dilutions on injuries of STZ-induced diabetic rats. Materials and Methods: For diabetes in...
متن کاملCap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase.
Deletion of the telomerase RNA gene (TER1) in the yeast Kluyveromyces lactis results in gradual loss of telomeric repeats and progressively declining cell growth capability (growth senescence). We show that this initial growth senescence is characterized by abnormally large, defectively dividing cells and is delayed when cells initially contain elongated telomeres. However, cells that survive t...
متن کاملRadiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways.
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid y...
متن کاملSliver nanoparticles accelerate skin wound healing in mice (Mus musculus) through suppression of innate immune system
Objective(s): This study aimed to find the effects of silver nanoparticles (Ag-NPs) (40 nm) on skin wound healing in mice Mus musculus when innate immune system has been suppressed.Materials and Methods: A group of 50 BALB/c mice of about 8 weeks (weighting 24.2±3.0 g) were randomly divided into two groups: Ag-NPs and control group, each with 25 mice. Once a day at the same time, a volume of 50...
متن کاملDefective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast
A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 194 2 شماره
صفحات -
تاریخ انتشار 2013